
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

1

Real-time high speed motion prediction using fast
aperture-robust event-driven visual flow

Himanshu Akolkar, Sio-Hoi Ieng, and Ryad Benosman

Abstract—Optical flow is a crucial component of the feature
space for early visual processing of dynamic scenes especially
in new applications such as self-driving vehicles, drones and
autonomous robots. The dynamic vision sensors are well suited
for such applications because of their asynchronous, sparse and
temporally precise representation of the visual dynamics. Many
algorithms proposed for computing visual flow for these sensors
suffer from the aperture problem as the direction of the estimated
flow is governed by the curvature of the object rather than
the true motion direction. Some methods that do overcome this
problem by temporal windowing under-utilize the true precise
temporal nature of the dynamic sensors. In this paper, we propose
a novel multi-scale plane fitting based visual flow algorithm that
is robust to the aperture problem and also computationally fast
and efficient. Our algorithm performs well in many scenarios
ranging from fixed camera recording simple geometric shapes to
real world scenarios such as camera mounted on a moving car
and can successfully perform event-by-event motion estimation
of objects in the scene to allow for predictions of upto 500 ms
i.e. equivalent to 10 to 25 frames with traditional cameras.

Index Terms—Event driven, Neuromorphic, Optical Flow,
Motion Prediction

I. INTRODUCTION

Optical flow is the measure of motion of an object
projected on to the image plane of a camera. It is

one of the fundamental steps needed for understanding a
dynamic visual scene and has taken an even important role
with newer applications such as autonomous driving vehicles
[16], drones, action perception during user interactions [14]
in robots and traditional applications like video editing [15]
and stabilization. Because the visual sensing has traditionally
been based on image acquisition at fixed time intervals, the
computation of optical flow has been based on finding features
that move across two or more consecutive images. Since the
intensity of light received on the sensor is the most basic
feature, the first principle approach for measurement of optical
flow is given by the ‘brightness constancy assumption’ that
assumes that the brightness of an object moving across the
camera remains constant over short internal of time. Ideally
this time interval should be infinitesimal, but practically,
for the traditional cameras, this means the time between
two recorded frames. This constant instantaneous brightness
assumption forms the basis for the earliest algorithms such

Himanshu Akolkar is at University of Pittsburgh, USA
Ryad Benosman is at Robotics Institute, Carnegie Mellon University, USA,

University of Pittsburgh, USA and Sorbonne Universite, INSERM, CNRS,
Institut de la Vision, France

Sio-Hoi Ieng is at Sorbonne Universite, INSERM, CNRS, Institut de la
Vision, France

as those proposed by Horn and Schunk [4] and the Lucas-
Kanade (LK) algorithm [5]. This has been further expanded
to ‘constant feature assumption’ where complex features or
descriptors are extracted [6] and tracked over multiple spatial
scales [19]. With the advancements in convolution and deep
neural networks, a number of new algorithms using these
approaches have been proposed to compute visual flow [20],
[17], [18]. Some of these methods even propose tackling
optical flow computation as a learning problem [21]. While
these approaches intend to achieve high accuracy using the
improving computational power of GPUs and FPGAs, the
fundamental problem of fast sensing and image processing
still poses a hinderance towards using such techniques as part
of a larger perceptive autonomous system.
The new generation of dynamic visual sensors [1], [2], [3]
might be able to fill in this niche application space by virtue
of their fast, accurate sensing of light with high temporal
precision. In this paper, we propose an algorithm designed
for use with one such type of sensor [3]. Event-driven sensors
have evolved over the last few years as possible successors to
frame based classical cameras, especially for visual sensing
in research areas that require high precision over a large
temporal dynamics range like robotics [23], [25], [22], [24],
autonomous vehicles [26] and navigation in drones [27]. As
these sensors provide precise motion information due to the
inherent design of the pixels, they are ideal for fast visual
flow computations.
A number of methods have been proposed to compute visual
flow using event based sensors. As events in the event-driven
sensors are essentially encoding the light intensity captured
by the pixels, algorithms based on the original image based
Lucas-Kanade method have been proposed [7]. While these
event-driven derivatives are fast, they cannot achieve the
same accuracies as the frame-based variants due to the loss
of information in conversion from intensity to events.
Several algorithms are designed specifically to take advantage
of the temporal nature of event-driven paradigm [8], [9].
These algorithms use the spatio-temporal structure of events
to estimate the flow by fitting a surface (usually a plane) and
compute the normal of this surface as flow estimate. These
algorithms maybe classified under the label of ‘plane-fitting
algorithms’. While these algorithms have improved accuracy
of event flow, they are limited to computations of local
dense flow. Further, the flow obtained is always computed
as orthogonal to the edge irrespective of the direction of
true motion. Thus, the flow computation is susceptible to
the gradient of the edge. This problem is referred to as
the aperture problem. The only way to tackle the aperture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

problem with a traditional plane-fitting method is to increase
the size of the spatial neighborhood around the events when
fitting the plane but this can lead to errors as the true size
of the object is unknown and the shape of object might not
remain linear.
A recent algorithm has been able to avoid this problem
using constrained statistical properties of the object but it
is computationally too intense to be used in real time and
is only valid for object with closed form [10]. Another
recent method for computing event-driven visual flow uses
a spatio-temporal window of events and performs histogram
matching of the event clusters to estimate the direction and
speed of object. Thus, the current state-of-the-art algorithms
lose the temporal dynamics of the input sensor events as they
require pooling of events over a temporal and spatial window
to avoid aperture problem.
Here we propose a new event-driven algorithm to solve
aperture problem using multi-scale spatial pooling that uses
the local erroneous flows computed at the lowest scales and
corrects their direction towards the true direction of motion
of the object. We mathematically prove that because of the
specific properties of the plane fitting algorithms, pooling
the fast but erroneous local flows over an appropriate spatial
scale can correctly estimate the real direction of the object.
Further, the estimation of this spatial scale can be computed
at every event independently without any a-priori knowledge
about the shape and size of the objects in the scene and
is independent of any global motion of the camera. The
proposed algorithm can perform in myriad of scenarios.
Finally, this flow rectification allows us to perform very
low-level event predictions i.e. when and where should new
events appear according to the observations. We show via
experiments that we can estimate on the fly, locations and
velocities of moving objects of up to 500ms ahead in the
future. Such prediction can be implemented for solving visual
tasks such as collision avoidance and tracking.

II. METHODS

The algorithm proposed in this paper uses multi-scale
pooling found in biological visual system in higher animals
for hierarchical object recognition. The basic idea here is to
perform local, fast flow measurements which might be incor-
rect in their direction estimations but are relatively reliable in
amplitude estimates and then correct the direction estimates
using global amplitude information.

A. Multiscale pooling

Figure 1 shows the principle idea motivating the correction
procedure explained in the next section. Let us assume the
most ideal case suited for the plane fitting method: a single bar
moving in front of the camera generating a perfect event plane
in the [x, y, t] space. If the bar is oriented orthogonal to its
direction of motion (Figure 1(a)), the estimate of the velocity
computed using the plane fitting method [8] (Figure 1(d))
would be equal to the true velocity U. But, if the bar is now
rotated (b) by an angle θ, the velocity estimate of the flow

from plane fitting is Un = UTn.n, n being the unit normal
to the bar. The signed magnitude of this flow can be given by:

UTn = |U| cos (θ), (1)

This shows that the plane-fitting based estimated flow is
equal to the true direction of motion when the magnitude of the
estimate is maximum, i.e. the cosine is maximum in Eq. (1).
It is important to note that the normal n, without additional
assumption, can have two directions - namely either one of the
two directions along the line orthogonal to the bar. However,
if we are considering the temporal surface defined in [8] (as
shown in figure 1(d-f)) as a bi-dimensional function t of (x, y),
where the gradient of t allows us to define n as its unit
direction vector then t is always increasing in the direction
of the motion (i.e. the directional derivative of t along U is
increasing) and we always have θ ∈ [−π2 ,

π
2] or equivalently

Ut.n ≥ 0.
We can generalize the observation in Eq (1) to more

complex objects using this property of the plane-fitting flow
computation. Figure 1(c and f) shows one such example case:
let us consider a contour of a random shape moving with
velocity U. We can approximate this shape as a set of line
segments. For each pixel/event of each segment, the plane
fitting method is estimating Un. If we consider a spatial
neighborhood σ around a random pixel (example : green dot
in (c)) - for which we have estimated its normal velocity, the
mean speed (i.e. the amplitude of the mean velocity) computed
within σ is defined as:

|Un| =
∑
i∈σKiU

Tni∑
i∈σKi

, (2)

where Ki is the length of the ith segment in pixels within σ
and with the assumption that all the pixels are contributing in
the mean flow estimation.

If we assume that within this spatial neighborhood there lies
a line segment j such that it is oriented relatively closest to
the true motion direction (i.e. θ is minimal and ideally θj = 0
when it is oriented orthogonal to the true velocity), we can
find an upper bound for |Un|:

|Un| ≤
∑
i∈σKiU

Tnj∑
i∈σKi

= UTnj = Um. (3)

Since the local mean speed is upper bounded by the
amplitude of the velocity that is ”most” colinear to U, the
larger the |Un| we get from a given σ, the closer we are to
U i.e. the σ leading to the largest |Un| is the ”right spatial
scale” for which |U−Un| is minimized. As we do not know
the true velocity U, Um becomes our next best reference for
U.
According to this observation, for a given flow estimate, we
define the problem of correction as the minimization problem
of finding the neighborhood scale, σ, for which the cluster
of flow estimates whose mean magnitude is close to the
theoretical maximum |U| ≈ Um as described previously. Thus,
for given neighborhood σ, we define the error function as:

Eσ =

∑
i∈σKi(Um −UTni)∑

i∈σKi
. (4)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

3

n1

Fig. 1. (a) and (b) show an oriented edge moving across the sensor in true direction U and the predicted local flow UTn by fitting the plane over events
in [x, y, t] space as in (d) and (e). The magnitude of the normal velocity component estimated by the plane fitting method is related to the orientation of the
edge and true motion direction as UTn = |U| cos (θ). This relationship can be extended to a larger complex shaped object by linearizing it using multiple
small edges (c) over small spatial region and performing plane fitting over each local edge (f). (c) The best estimate of true flow direction can be estimated
by finding the correct spatial size σ corresponding to the maximum mean magnitude |Un|.

We then have according to (3):

Eσ = Um − |Un|. (5)

Since 0 ≤ |Un| ≤ Um, the problem of finding the right σ
is equivalent to the minimization problem

argmin
σ

(E) = argmin
σ

(Um − |Un|)

≡ argmax
σ

(|Un|).

≡ argmin
σ

(|θ|).

(6)

The above equations show that finding the scale with
maximum mean magnitude is equivalent to finding the scale
which best estimates the direction of true global flow. Eq.
5 and 6 combine to give the new estimated flow, magnitude
and direction, from the optimal spatial scale. Thus, we only
require to compute the flow over the smallest scale once,
and perform the above maximization over larger spatial scales
to get the best estimate of the true global motion direction.
Since, the above method is an optimization problem, the
resulting estimate of the direction depends on the available line
segments directions in the scene. While the method can give
us the ”true” direction of the object, in non-ideal conditions
when the line segment that is orthogonal to the true direction is
missing, the method can only provide the closest best estimate
of the true direction. Further, as the estimated flow is given
by the average local flows in the optimal spatial scale, it is
possible that the flow is slightly biased by the flow values
from the incorrect orientations. Since the incorrect flow values
decrease with cosine of the angle, this bias is generally very
small - nonetheless, this means that rather than getting the
exact true flow, we will get very small errors in the flow.
The proposed algorithm can therefore be divided into three
steps. First, we compute local flow for each event using plane

fitting. Second, we search for a spatial scale for which the
mean magnitude of these local flows is maximized. Third, we
calculate the mean direction for the flows in this scale and
assign the direction to all the local flow events within this
scale.

Interestingly, while we define Eq. (1), in regards to the
plane fitting algorithm, this property holds true for many other
methods of computing local flow such as the Lucas-Kanade
flow [5] or their event based versions [7]. This means that
while this paper in the following section uses plane-fitting to
compute and correct local flow, the proof below shows that any
existing flow methods that adhere to the relationship in Eq. (1)
can be corrected using the multi-scale correction method.

III. ALGORITHM IMPLEMENTATION

The steps involved in the implementation of the flow are
described in Algorithm 1. The local flow was computed
using an iterative implementation of the plane fitting flow as
in [12]. Some minor changes are introduced to the original
implementation in [12] to improve performance. Firstly, to
improve the accuracy of the flow and remove noise, we add
an error correction step to ensure better accuracy of the plane
fitting by computing the number of inliers (events that are
within a certain distance from the fitted plane). If the number
of inliers is more than half the total points used to fit the plane,
we consider the fitting to be good and the flow estimate to be
reliable. This improves overall efficiency and noise robustness
as the rectification is only performed on valid flow events.
To further avoid older events from corrupting flow estimates,
we added a temporal history limit such that the correction was
performed using events that occurred within a certain time
(tpast) from current event. Table I lists the parameters values
used to estimate flow for datasets used the experiments and
results in Section IV.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

4

Algorithm 1 Multi-scale aperture robust optical flow
1: for each event x, y, t do
2: 1. COMPUTE LOCAL FLOW (EDL):
3: Apply the plane fitting [8] to estimate the plane

parameters [a, b, c] within a neighborhood (5x5) of
(x, y, t).

4: Set Û = ||(a, b)|| and Inliers count = 0
5: ẑ =

√
a2 + b2

6: for each event (xi, yi, ti) in neighborhood N=5 do
7: t̂ = (axi − x) + (byi − y)
8: if |ti − t̂| < ẑ

2 then
9: Inliers count = Inliers count+1

10: end if
11: end for
12: if Inliers count ≥ 0.5 ∗N2 then
13: Set θ = arctan(a/b) and Un = (Û , θ)T

14: else
15: Un = (0, 0)T .
16: end if
17: 2. MULTI-SPATIAL SCALE MAX-POOLING:
18: Define S = {σk}, the set of neighborhoods, centered

on (x, y, t), σk with increasing radius and δ t(σk) ≤ tpast
(tpast is temporal cut-off delta)

19: if Un 6= (0, 0)T then
20: for each σk ∈ S do
21: Un,σk

= mean
j∈σk

(Unj
) = (Ûk, θk)

T

22: end for
23: σmax = argmax

σk∈S
(Ûk)

24: end if
25: 3. UPDATE FLOW:
26: Flow (x,y) = Un,σmax

27: end for
28: Refer Table I for parameter values.

Parameter Value

Local flow
Filter size N 5 pixels

Inlier percentage 50%

Rectification
Spatial range σ 0 to 100 pixels in steps of 10

Temporal limit tpast 5 msec

TABLE I
ALGORITHM PARAMETERS

IV. EXPERIMENTS AND RESULTS

The performance of the algorithm was measured in different
scenarios to test its effectiveness over the plane fitting method.
The results are divided into two sections - first, we show
in four different scenarios how our algorithm corrects the
direction errors over the plane fitting algorithm. In the later
section we show how this corrected flow can be used to
implement event-by-event predictions of moving objects. For
the sake of brevity, in the rest of the text, we abbreviate the
local plane fitting flow as EDL (Event Driven Local) flow
while the corrected flow estimates using our algorithm as
ARMS (Aperture Robust MultiScale) flow.

Fig. 2. The figure shows the output of the algorithm for trivial case of bars
and squares moving up and down. (A) The direction of EDL flow estimates
is normal to the edge orientations which is corrected by ARMS. (B) shows
events color coded by the size of optimal window. (C) represents the direction
distributions showing how the EDL gives three distinct peaks for each of the
orientations which ARMS corrects towards a single peak representing vertical
motion.

A. Flow correction

1) Camera fixed, trivial pattern: We used a simple geomet-
ric pattern of bars and squares moving up and down in front of
the sensor. Figure 2(A)[EDL Flow] shows the flow computed
using just plane fitting algorithm on a given slice of events. As
evident from the figure, while most of the events have correct
flow direction on the bars, the flow directions of the edges
of the square are incorrectly pointing towards the normal of
the edges. Figure 2(A)[ARMS Flow] shows the output of our
algorithm. The directions of the edges are corrected uniformly
towards the true direction of motion. The quantification of
these results are shown in the histograms of Figure 2[right].
The graphs in red show the distribution of directions (in radian)
estimated by the plane fitting algorithm. The graph indicates
tri-modal distribution for downward/upward (π/2, 3π/2) and
the directions along the normal to the edges (π/4, 3π/4 for up
and 5π/4, 7π/4) while the distribution of the corrected flow
directions (blue) largely make up a single peak in the direction
of real motion. Figure 2 (B) shows the size of optimal scale
detected by the correction step for each event. The events on
bars have small spatial scale size as they represent the correct
direction. For the pixels on the square, however, since the bar
represents the best flow, the size of window increases as the
events get farther away from the bar and a larger scale which
would include the bar is needed to find the best direction. This
also means what while the optimal scale sizes for the square
are symmetric vertically, the presence of the bar means that
the horizontal symmetry is lost. The size of the optimal spatial
scales are still independent of direction of motion.

2) Camera fixed, multiple objects: Next, we tested the
robustness of the multi-scale pooling in case of more than
one object moving in front of the camera. To do this, we
recorded two simple objects (two squares) moving across the
camera in opposite directions. We also have a stationary object
in the scene that may lead to noisy events. The experiment
shows that the spatial pooling is not affected by multiple
objects and the algorithm can find the correct scales for each
object independently. Further, when the objects cross each
other close by, the algorithm is robust enough to recover the
correct directions. Figure 3 shows EDL and ARMS flow output

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5

EDL-Flow ARMS-Flow Direction Histogram

Fig. 3. Comparison of EDL and ARMS for two moving objects. The three
rows show the direction outputs of the EDL and ARMS flow at three time
points. The algorithm works well even when the two objects cross each other
closely. Direction histograms show bimodal distribution from ARMS (blue)
for the direction of the two individual shapes. The EDL flow (red) however
leads to a larger variance and almost a uniform distribution. Even with only
one object in the scene (bottom row), EDL flow gives rise to two modalities
but ARMS gives a single peak at 3π/2.

for the two objects and the corresponding direction distribution
of events over events in a time window of 100 ms. The left
column shows the EDL outputs color coded by the direction
of flow estimates. As expected, the estimated directions are
normal to the edge directions for each of the objects, leading
to an almost uniform distribution of event directions. This,
is corrected by ARMS so that we get two distinct peaks in
the direction histograms. As the objects collide and cross
each other, the EDL becomes slightly worse and the peaks
shift whereas the ARMS flow distribution remains invariant
(Figure 3 [middle row]). Finally, as the objects move further,
and we only have one object, the distributions becomes similar
to the one in Exp IV-A1 with single moving object. Again,
while EDL gives two peaks for each of the edge orientations,
we get a single peak from ARMS indicating the global motion
direction.

3) Camera fixed, objects occluding: Next, we tested the
robustness of the multi-scale pooling in case when more than
one object moving in front of the camera overlap and occlude
each other. We setup two pendulums of the same length
and size but placed at different depths from the sensor. The
pendulums were left to oscillate at out of phase positions
such that while both the pendulums are visible to the sensor,
there are moments when the two pendulum overlap each
other. The setup and qualitative results are shown in figure 4.
Figure shows the output of the ARMS flow for a sequence

of about 200 msec during which the two objects overlap
and then pass each other. We also show how the optimal
spatial scale found by the correction step of the algorithm
changes over time as different parts of the objects move over
a given pixel represented by the black dot on each panel.
The spatial scale is represented by the black rectangle. As the
pendulums pass by, the optimal scale selected by the correction
step changes depending on which parts of the pendulums
are passing through the pixel. The ARMS flow provide the
directions close to the actual directions when the pendulums
are far apart as in the panels 0 to 10 msec. As the pendulums
move closer, the flow direction of the rightmost edge of the
smaller pendulum gets corrupted by the higher magnitudes of
the larger pendulum. At 102 msec, panel we start to see the
impact of the larger pendulum on the spatial scale detection.
Even though the obeserved pixel is on the smaller pendulum,
the higher magnitudes of the larger pendulum lead to larger
spatial scales to be selected as optimal, as represented at 110
msec by the larger rectangle. Finally, as the two pendulums
get farther apart at 170 msec, we can see that the flow for the
leading edge of the smaller pendulum are quickly corrected
and the correct flow values are recovered. This shows that
while the algorithm can get affected instantaneously due to
overlapping object, the error remains only for a very short
duration of the overlap and can be quickly recovered.

4) Real world scene - Camera mounted on moving car:
The flow rectification is also assessed through a real world
scene in which the event-based camera was mounted on a car
moving through traffic along the streets of Paris. The flow
obtained from the algorithm corrects the local perpendicular
flow to provide a better global flow especially when the car
is making turns, where the whole scene should have the
same global flow direction. The optical flow corrections can
improve the flow directions when the car is turning, making
all events predicting the apparent global direction of turn.
Further, the combination of speed and flow directions can
easily segment objects moving independently from the car.
Figure 5 shows the EDL and ARMS flow for different traffic
conditions. The bottom row shows interesting points (marked
by black rectangles) in the scene where the ARMS flow
successfully corrects erroneous directions of the EDL. These
show that the spatial scale estimation works correctly even
in a cluttered environment and large motion events. Further,
direction estimates of independent moving objects such as cars
is not affected by the global motion.

B. DAVIS dataset with ground truth

1) Application to the Event-Camera dataset: To test the
efficacy of our method on a benchmark dataset, we chose to
implement it on events and images recorded with a DAVIS
which also recorded motion of the camera using an inertial
measurement unit (IMU) at 1000Hz [28]. This provides us
with not only images of the scene but also the angular velocity
of the camera as the scene is recorded. We implemented the
ARMS flow on dynamic rotation scene where an office scene
is recorded with camera primarily rotating around its axes.
The recording involves different speeds of rotations. . Figure

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

6

Fig. 4. Figure shows the setup (A) and ARMS flow directions (B) for a scenario with two pendulums of same length and size but at different depths from
the sensor. The figure also shows, as black rectangle, the size of optimal window found by ARMS flow for a given pixel (black dot). We can see that as
the two pendulums get close around 70 msec time point, the front edge of the smaller pendulum starts to get erroneous direction estimate due to the higher
magnitudes of the closer pendulum. The direction estimates are quickly corrected though, as soon as the two pendulums start to move away (170-190 msec)

8 shows the output flow directions for the recorded data. Figure
6 shows the actual imu recordings of the angular velocities and
the angular velocities estimated using the EDL and our flow.
The graphs show that the predicted velocity can follow the
real velocities well as indicated by the high correlation scores
which also show improvements over the EDL flow predictions.
The flow fails somewhat for the W y when the camera moves
at higher speeds as seen in the 40 to 60 second mark in bottom
graph.

2) Application to MVSEC dataset: Finally, we also have
applied the optical flow rectification algorithm on the MVSEC
dataset [13] as shown in Figure 9. Fig. 6 shows the ground
truth velocities over the duration of recordings for the several
conditions and the corresponding mean EDL amd ARMS
flow. The MVSEC dataset ground truth combines several
sensor data along with the framed images obtained from the
camera to create dense flow for every image taken by the
camera. Since our algorithm produces flow for every event, to
compare with the ground truth, for every pixel we averaged
the flow produced between the two images. Figure 9 shows
qualitative comparisons between the EDL, ARMS and ground
truth directions from snapshots of the data taken in different
conditions. We find that the ARMS flow vastly improves the
EDL flow and generally performs well in different conditions.
There are also conditions where the flow does perform poorly
as shown in the bottom panels for the conditions - indoor
flying 1, indoor flying 3 and outdoor driving. Such situations
arise when the camera/scene are moving too slow for the
EDL flow to provide good flow outputs or when the direction
changes are too large for the flow to correct quickly creating
discontinuity in the event plane. We must also note that
the ground truth is built from the information of a LIDAR,
(fused with the GPS and he IMU), which provides depth

information within a range of 100m in the case of outdoor
driving sequences. On the other hand, the ARMS flow is
estimated only from a single camera with much lower spatial
resolution. This leads to errors in the flow when the car is both
turning and moving forward as shown in the bottom panel
of the outdoor driving sequence in Fig. 9. The ARMS flow
seems to ”see” only the dominant apparent motion of a left-to-
right translation whereas the ground truth shows an expanding
flow due to far structures in the scene. To further quantify
the performance, as used in [13], we computed the average
endpoint error (AEE) =

∑
||(V̂ − Vtrue)||2 where Vtrue is the

ground truth derived from the dataset and V̂ is the computed
flow. The AEE was only computed over events rather than
whole images. The performance was compared against the
state of the art algorithms – EV-flownet [13] and Event based
visual flow (EV-flow) [8]. The results of the quantification
are presented in Table II. The errors for the Indoor Flying
conditions (In F ly) were taken from [13]. We additionally
report our error estimates for the outdoor driving conditions
for which the error values were not provided with the dataset.

Method In Fly1 In Fly2 In Fly3 Out Day Out Night
EV-flow 1.03 1.72 1.53 N/A N/A

Net
EV-flow 2.45 2.42 5.35 3.87 5.53
(EDL)
ARMS 1.52 1.59 1.89 2.75 4.47

flow

TABLE II
AVERAGE ENDPOINT ERROR (AEE) IN PIXEL, FOR & FIVE MVSEC DATA

SET. THE EV FLOW-NET PAPER DOES NOT PROVIDE ANY ERROR
PERFORMANCE FOR THE OUTDOOR SEQUENCES.

The proposed method shows remarkable improvements over
the EV-flow and even though the algorithm is simple and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

7

EDL-Flow ARMS-Flow Flow Direction Histogram

Fig. 5. Figure shows the flow directions for an ATIS mounted on a car moving straight ahead (top), taking a left turn (middle) and navigating around
another car (bottom). EDL flow is normal to the edges on most events which is reflected in the histograms by the small incorrect peaks at π/2 and 3π/2.
ARMS-Flow corrects these local abnormalities giving rise to correct direction dependent flow reflected in the two distinct peaks during straight motion and a
single large peak around 0 deg when the car is turning left. The bottom row provides shows how well the ARMS flow works in a cluttered dynamic case.
The black rectangles show the interesting regions in the scene where the normal directions are improved towards the true global flow while still maintaining
the directions of independent moving object like the car on the right which has a relative motion indicated in the forward direction (blue arrow).

works only on events, its performance matches that of the
EV-flownet which requires elaborate learning network and is
trained using both events and grayscale images. This means
that to use it, one must have both event and image recordings
for training of new scenes. Our method on the other hand only
uses change events. We think that retraining the EV-flownet
on binary images or only on events, or adding additional
grayscale information into our algorithm would be a more
suitable comparison and should close the performance gap
between the two algorithms.

C. Event based prediction using ARMS flow
1) Trivial Case: The corrected direction estimates using

ARMS flow can greatly improve the prediction of rigid
object over traditional plane fitting methods. Figure 7 shows
the actual future events (green) and the predicted events for
EDL (red) and ARMS (blue) flow using events that occurred
250 msec in the past. The figure shows that using ARMS
flow, all the predicted events of the square form another
square but if the directions are not the same as in case of
the EDL, the predicted shape is not rigid anymore and does
not form a square. To quantify the performance of the two

flows, we compute how well the predicted events from local
and corrected flow maintain the rigidness of the object. That
is, we compute the affine transformation needed to map the
predicted events to the actual events. To simplify, we assume
zero rotation and perform only translation and scaling. The
graphs in Figure 7 show the scaling and translation needed for
the EDL and ARMS flow for a sequence of 360 msec broken
into event clusters of 20 msec each. A perfect prediction
would imply no scaling (i.e. scaling correction = 1) and no
translation (translation correction = 0). The mean translation
error for ARMS flow was 6.52 pixels per event vs 8.70 pixels
per event for EDL flow. More importantly the scaling error in
ARMS was only 0.085 compared to 0.141 in case of EDL.
These results show that our proposed ARMS flow reduces the
translation error and requires almost no scaling corrections
showing that this flow can be used successfully to perform
predictions on moving rigid objects.

2) Prediction of multiple objects and moving car: Next, we
perform event by event predictions for the multiple moving
objects and moving car scenarios mentioned in the previous
section. Figure 10 provides the prediction results from the non

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

Fig. 6. Comparison of ARMS flow and EDL flow based velocity estimates
against the ground truth velocities recorded with an IMU for the rotational
dynamics data from DAVIS benchmark data and the Outdoor Driving and
Indoor Flying conditions from the MVSEC data over the duration of the
recordings.

Fig. 7. The figure shows the predicted events based on EDL and ARMS
flow at 250ms in future. Green dots indicate the actual future events while
the red and blue dots indicate events predicted by the two flows. The scaling
and translation error show how well the ARMS flow keeps the affinity of the
object events. The ARMS flow has required scaling closer to 1 and translation
error lower than the EDL flow error indicating that all events point to the true
direction of motion.

Fig. 8. Figure shows the flow results for two different available set of data
recorded with DAVIS. The panels show the EDL and ARMS flow directions
computed for data recorded for scenes recorded with camera moving freely
while simultaneously recording the events and the motion of the camera with
an IMU.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

Fig. 9. Figure shows the flow results for events recorded from different conditions from the MVSEC benchmark data. The panels show flow directions from
EDL and ARMS flow along with the ground truth directions. The ARMS flow vastly improves the EDL flow estimates and generally is close to the ground
truth directions. We also show examples when the ARMS flow fails as shown in the bottom panels for Indoor flying 1, Indoor flying 3 and Outdoor Driving
conditions.

Fig. 10. Figure shows the performance of EDL and ARMS flow on prediction
of events for the shapes and moving car scenario. The images show the
actual events (green), the predicted events using EDL (red) and the predicted
events using ARMS (blue). The figures show that the ARMS flow can
greatly improve the prediction in both clean and cluttered and complicated
environment invariant to the shapes or number of objects.

rectified and the rectified flow for these sequences. Contrary
to the two previous sequences, as the scale from the scene
is not easily extracted, we do not assess the impact of the
prediction by measuring the affine deformation parameters
and show only the prediction results. We managed thanks
to the rectified flow, to predict events up to 250 msec. The
ARMS flow can predict the event-by-event locations even in
such a highly dynamic scene across all directions and again
helps to maintain the affinity of different objects, such as
the car, the person walking and the environment such as the
dividers, poles and signs.

A

B

C

E

F

G

Fig. 11. Predictions of the motion of a person up to 200ms using ARMS
flow in real world cluttered environment occluded by objects. The images
show predictions when the pedestrian passes behind two poles (highlighted
by red masks). The location of the pedestrian is masked (blue) by clustering
the predicted event location and creating a single blob.

3) Prediction in cluttered scene with occlusions: We also
computed the flow and performed predictions at 200ms in a
more cluttered scenario where a pedestrian was tracked while
passing behind stationary objects and across other pedestrians
in a busy street scene. The results are presented in Figure
11. The predictions very clearly match the actual events.
This example is a typical showcase for the robustness of the
prediction to occluding perturbations. We do not need to resort
to more complex procedure such as some Kalman filtering to
achieve accurate prediction.

4) Prediction of moving pedestrian on street: To further
measure the prediction capabilities using our flow method we
placed the ATIS on a street corner and recorded pedestrians

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

EDL

ARMS0

1.0

0.9

0.5
0 2.5 5 7.5

4

8

12

16

Time (sec)

P
ix

e
ls

Translation Scale

0.7

0 2.5 5 7.5

P
ix

e
ls

Fig. 12. Figure shows the possibility of performing predictions based on optical flow estimates for people passing by on a street at two different points in
time. The images shows the actual events (green), predicted events using EDL (red) and predicted events using ARMS (blue) over grayscale images obtained
from ATIS. The predictions from ARMS clearly show much better fit with the actual events while the predictions from EDL tend to create inflated shapes.
This is quantified in the graphs showing the transformation required to fit the predicted events to the true events. The EDL required larger corrections in both
scaling and translation compared to ARMS predictions.

passing by. As in the trivial case example, for each incoming
event, we make prediction on where the event will occur
after 500 msec using the optical flow computed with both the
local plane fitting and the new ARMS flow algorithm. We
performed the transformation estimation for event clusters
over 50 msec time windows. While the direction component
of the flow for each event is used as it is, the speed component
of the flow is normalized by the mean speed i.e., each event
i in the event-cluster has speed M and direction θi, where
M is the mean speed of all events and θi is individual flow
directions. Using these predictions, a reconstruction of the
motion is made based on local and corrected flow as shown in
Figure 12 by red and blue dots respectively. The figure shows
that the ARMS flow can predict the position of the man up

to next 500 msec very accurately. We used the transformation
metric as used in the previous experiment to compare the
performance of the two methods. The graphs show that the
ARMS method outperforms the EDL through the sequence
of recording for both scaling and translation corrections. The
mean translation error for EDL was 7.1240 pixels while
that for ARMS was 4.7558 pixels while the scaling error
was 0.297 and 0.167 for EDL and ARMS respectively.
Qualitatively, the cluster formed by the predictions based on
the ARMS-Flow is less noisy and more compact and is much
closer to the real events. This shows that our algorithm can
maintain the shape on a rigid moving object even when the
predictions are made on an event by event basis and therefore
at very high temporal rates.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

11

Data Num Actual Compute Rate
Events duration(sec) time(sec) (Evn/sec)

Shapes 111999 0.678 0.845 132510
BarSquare 1.25e6 5.8 8 156305
OutDay 1 5e6 13.41 25.9 132926

OutNight 1 5e6 17.2 23.3 114286
IndoorFly 1 5e6 29.87 28.2 192205
IndoorFly 2 5e6 19.58 28.16 127500
IndoorFly 3 5e6 24.21 26 172308

TABLE III
BENCHMARK COMPUTATION TIMES ON AN INTEL E5-1603 PROCESSOR.

V. CONCLUSION

Event driven sensors provide an efficient sampling method
to solve computer vision problems with scope for developing
novel algorithms in temporal domain. Optical flow is an
important feature for most vision based open problems and
estimating fast yet robust flow is a crucial step. While some
interesting algorithms have been developed to estimate visual
flow using the event-driven sensors, they either fail to solve
the aperture problem due to the emphasis on local spatio-
temporal computation or are inefficient and do not really use
the high event speeds of these sensors. In this paper, we have
presented a novel visual flow algorithm that not only solves the
aperture problem but also performs on an event-by-event basis
justifying the use of event-driven sensors. In fact, we exploit
the intrinsic property of the event based optical flow algorithm,
that allows for correcting the directions of erroneous local flow
estimates. We have shown here that the algorithm works in real
world scenarios, in case of both stationary and moving camera.
The algorithm is invariant to the number of objects or their
size and does not require additional processing steps such as
object detection and tracking. This fast implementation allows
us to perform truly event based prediction of moving objects
from 250 to 500 msec in future without affecting the shape and
size of the object. This is equivalent to making estimations of
position of an object upto 10-25 frames in future when using a
traditional frame-based camera. To the best of our knowledge,
we could not find any methods using event-driven sensors that
have attempted to perform such accurate predictions without
any temporal binning of events. Further, these predictions are
invariant to the size and number of independent objects in the
scene. These predictions can allow higher order recognition
and tracking layers to perform at the high temporal rates at
which events are generated. Our future goals are to use this
algorithm as part of an autonomous driving car sensor system
to allow for fast collision detection and detect abnormal driver
and pedestrian behavior. Further, the spatial scaling method
works not only for plane fitting based local flow methods
but any local flow methods that satisfy the condition that
the flow magnitude is related to the contour of the edge or
object in motion. Since, our algorithm does not use higher
order features, the true flow is only possible if an edge with
true direction motion is present. In general, the flow improves
depending on the presence of edges that are close to being

orthogonal to the true flow direction. Also, since the flow is
provided by the mean of local flows in a spatial window, the
estimated flow is slightly moved away from the true flow. An
improved prediction of the magnitude of flow could allow us
to make predictions at even longer duration of up to a few
seconds. A possible solution to improve the estimates could be
by using the gray scale information provided by an ATIS like
neuromorphic sensor. Analysing MVSEC and DAVIS data also
show that ARMS flow can fail in certain scenarios especially
in outdoor conditions where objects are far and the events on
the camera plane themselves are not enough to compensate
for the depth of the objects. This means that in cases when
the car is making turns while moving forward the ARMS flow
can only see the apparent motion of the whole scene moving
whereas the depth information using a LIDAR would allow
measure the expanding flow. In indoor flying cases, we found
that while ARMS flow can remarkably improve the EDL flow
output, errors occur if the drone makes large, sudden change
in directions as this leads to discontinuity in the event plane
and leads to large errors in local flow computation itself. The
ARMS flow still performs close to ground truth for most of
the duration of the flight sequences. Many new techniques for
motion correction use contrast maximization methods [30] to
segment events from object moving at different directions and
speeds. This may allow for flow to be computed on events
of individual objects. This could also improve the magnitude
estimations but the events correction using this technique is
still to some extent affected by the aperture problem [29].
In terms of the memory and CPU requirements, the algorithm
was implemented in C++ running on single core Intel E5-1603
processor, achieving on average a computation rate of 120
KEvents/second [Table III] and requires very small amount of
memory that increases linearly with the pixels resolution of
the sensor. While the traditional CPU is enough for real-time
processing on a qVGA sensor, a parallel neuromorphic hard-
ware implementation could make the algorithm independent of
the sensor resolution and allow real time motion based visual
processing for larger sensor arrays.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3010468, IEEE
Transactions on Pattern Analysis and Machine Intelligence

12

REFERENCES

[1] P. Lichtsteiner, C. Posch, T. Delbruck, A 128 x 128 120 dB 15 latency
asynchronous temporal contrast vision sensor, IEEE Journal of Solid
State Circuits 43, 566–576, 2008.

[2] T. Serrano-Gotarredona, B. Linares-Barranco, A 128 x 128 1.5% contrast
sensitivity 0.9% FPN 3 µs latency 4 mW asynchronous frame-free
dynamic vision sensor using transimpedance preamplifiers IEEE J. Solid-
State Circuits 48, 827–838. 2013.

[3] C. Posch, D. Matolin, and R. Wohlgenannt, A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS, IEEE J. Solid-State Circuits, Vol.
46:1, pp 259-275, 2011.

[4] B.K.P. Horn and B.G. Schunck, Determining optical flow Artificial
Intelligence, Vol. 17, pp 185–203, 1981.

[5] B.D. Lucas and T. Kanade, An iterative image registration technique
with an application to stereo vision,Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 674- 679 1981

[6] J. Wang and E. Adelson. Layered Representation for Motion Analysis,
IEEE Conference on Computer VIsion and Pattern Recognition (CVPR),
1994.

[7] R. Benosman, S.-H. Ieng, C. Clerq, C. Bartolozzi and M. Srinivasan
Asynchronous frameless event-based optical flow Neural Networks, Vol
27, pp 32–37, 2012.

[8] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng and C. Bartolozzi, Event-
based visual flow IEEE Trans. Neural Netw. Learn. Syst, Vol 25, pp
407–417, 2014.

[9] T. Brosch, S. Tschechne and H. Neumann, On event-based optical flow
detection Frontiers in Neuroscience, Vol 9, pp 137, 2015.

[10] S. Seifozzakerini, Analysis of object and its motion in event-based
videos, Thesis- School of Electrical and Electronic Engineering, Nanyang
Technical University, Singapore, 2017.

[11] M. Riesenhuber and T. Poggio, Hierarchical Models of Object Recog-
nition in Cortex Nature Neuroscience, Vol 2, pp 1019-1025, 1999.

[12] D. R. Valeiras, X. Clady, S.H. Ieng, and R. Benosman, Event-Based
Line Fitting and Segment Detection using a Neuromorphic Visual Sensor,
IEEE Transactions on Neural Networks and Learning Systems, [in print],
2018.

[13] A.Z. Zhu, L. Yuan, K. Chaney and K. Daniilidis, EV-FlowNet: Self-
Supervised Optical Flow Estimation for Event-based Cameras, Robotics:
Science and Systems, 2018.

[14] K. Simonyan and A. Zisserman, Two-stream convolutional networks
for action recognition in videos, In Advances in Neural Information
Processing Systems (NIPS), 2014.

[15] N. Bonneel, J. Tompkin, K. Sunkavalli, D. Sun, S. Paris and H. Pfister
Blind video temporal consistency, ACM SIG-GRAPH, 34(6):196, 2015.

[16] M. Menze and A. Geiger Object scene flow for autonomous vehicles,
IEEE Conference on Computer VIsion and Pattern Recognition (CVPR),
2015.

[17] M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting semantic
information and deep matching for optical flow. In European Conference
on Computer Vision (ECCV), 2016.

[18] C. Bailer, K. Varanasi, and D. Stricker. CNN-based patch matching for
optical flow with thresholded hinge embedding loss. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017

[19] T. Brox, C. Bregler and J. Malik, Large displacement optical flow, IEEE
Conference on Computer VIsion and Pattern Recognition (CVPR), 2009.

[20] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy
optical flow estimation based on a theory for warping. In European
Conference on Computer Vision (ECCV), 2004.

[21] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox
FlowNet 2.0: Evolution of optical estimation with deep networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[22] V. Vasco, A. Glover, Y. Tirupachuri, F. Solari, M. Chessa, and C. Bar-
tolozzi, Vergence control with a neuromorphic iCub, In IEEE-RAS
International Conference on Humanoid Robots, November 2016.

[23] A. Glover and C. Bartolozzi, Event-driven ball detection and gaze
fixation in clutter, In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2203–2208, 2016.

[24] F. Rea, G. Metta and C. Bartolozzi, Event-driven visual attention for
the humanoid robot iCub., Frontiers in neuroscience, Vol 7, 234, 2013.

[25] H. Akolkar, D. Reverter Valeiras, R. Benosman and C. Bartolozzi,
Visual-auditory saliency detection using event-driven visual sensors,
International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP), 2015.

[26] A.I. Maqueda, A. Loquercio, G. Gallego, N. Garcia and D. Scaramuzza,
Event-based Vision meets Deep Learning on Steering Prediction for
Self-driving Cars, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[27] T. Rosinol Vidal, H. Rebecq, T. Horstschaefer and D. Scaramuzza,
Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual
SLAM in HDR and High Speed Scenarios, IEEE Robotics and Automation
Letters (RA-L), 2018.

[28] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck and D. Scaramuzza,
The Event-Camera Dataset and Simulator: Event-based Data for Pose Es-
timation, Visual Odometry, and SLAM, International Journal of Robotics
Research, Vol. 36, pages 142-149, 2017.

[29] T. Stoffregen, L. Kleeman, Event Cameras, Contrast Maximization and
Reward Functions: an Analysis., IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[30] T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, D. Scaramuzza,
Event-Based Motion Segmentation by Motion Compensation, IEEE Inter-
national Conference on Computer Vision (ICCV), 2019.

Himanshu Akolkar is currently a Post Doctoral
Associate at the University of Pittsburgh. He
received his M.Tech. degree from IIT, Kanpur
(India) in EE and PhD from IIT, Genoa (Italy)
in Robotics after which he had a Post Doctoral
stint at Université Piérre ét Marie Curie. His
primary interest is to understand the neural
basis of sensory and motor control to develop
an intelligent machine.

Sio-Hoi Ieng is currently an Associate Professor
with Sorbonne Université, Paris, France, and a
member of the Vision Institute, Paris. He was
involved in the geometric modeling of catadiop-
tric and non-central vision sensors and their link
to the caustic surface. His current research inter-
ests include neuromorphic and event-based vision
perception algorithms and computer vision, with
a special reference to the understanding of gen-
eral visual sensors, exploring cameras networks,
and studying the connection between biologic and

artificial vision.

Ryad Benosman received the M.Sc. and Ph.D.
degrees in applied mathematics and robotics
from University Pierre and Marie Curie in 1994
and 1999, respectively. He is Associate Professor
with University Pierre and Marie Curie, Paris,
France, leading the Natural Computation and
Neuromorphic Vision Laboratory, Vision Insti-
tute, Paris. His work covers neuromorphic visual
computation and sensing. He is currently involved
in the French retina prosthetics project and in the
development of retina implants and cofounder of

Pixium Vision a french prosthetics company. He is an expert in complex
perception systems, which embraces the conception, design, and use of
different vision sensors covering omni-directional 360 degree wide-field
of view cameras, variant scale sensors, and non-central sensors. He
is among the pioneers of the domain of omni- directional vision and
unusual cameras and still active in this domain. He has been involved in
several national and European robotics projects, mainly in the design of
artifcial visual loops and sensors. His current research interests include
the understanding of the computation operated along the visual systems
areas and establishing a link between computational and biological vision.
Ryad Benosman has authored more than 100 scientific publications and
holds several patents in the area of vision, robotics and image sensing.
In 2013, he was awarded with the national best French scientific paper
by the publication LaRecherche for his work on neuromorphic retinas

